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ABSTRACT
The control of complex networks is a hot-spot topic in the field of
complex networks. Based on Lyapunov function and matrix theory,
a control scheme for complex networks coupled with nonlinear
dynamical systems is presented here. Different from the existing
finite-time control strategies, the settling time of our proposed
scheme does not depend on initial values or the control parameters
of the system, and can be given arbitrarily. In addition, the scheme
is applicable to both directed and undirected networks, and con-
nectivity is not required. Finally, two simulations are provided to
confirm the feasibility of our theoretical result.
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1 INTRODUCTION
Due to the development of network information technology, human
society has entered the era of complex networks [1-3]. Generally,
a complex network can be described as many nodes and edges.
When two nodes have a certain relationship between them, they
connect an edge, otherwise, no edges are connected. Two nodes
connected by edge is regarded as adjacent in the network. For ex-
ample, the metabolic network can be seen as a network connected
by enzymes through metabolites [4]; Social network can be re-
garded as a network formed by a variety of relationships, such as
friendship, cooperation and business relationships [5, 6]. Aviation
network can be regarded as a network formed by setting up flights
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in different cities [7]; There also exists power grid networks [8],
military networks [9] and disease networks [10]. It is obvious that
complex networks are everywhere and closely related to human
life.

On the one hand, the ultimate goal for complex networks is
to control the dynamic behavior. The structural controllability of
complex dynamical systems started from Liu [11], who studied from
the perspective of linear cybernetics. Drived by this research, the
structural controllability has become a hot topic in network science,
and a large number of research works have emerged successively
[12-15]. Later, Yuan et al. solved the problems of strict controllability
and control input of complex networks [16], which broadened its
application scope. Whether it is structural control or strict control,
it is only for linearly coupled complex network dynamic systems.

However, in reality, there are a variety of nonlinear systems,
which have more complex dynamic behaviors. Recently, biologi-
cal neural networks have attracted the attention of scientific re-
searchers. As the basis of the nervous system that generates cog-
nitive function, biological neurons play an incomparable role in
information optimization and processing, understanding the mem-
ory rules of the brain and other aspects. At present, the biological
neural network is the most complex nonlinear dynamic system ever
discovered. And the in-depth study of its nonlinear dynamical sys-
tem is of great theoretical value for revealing the process, cognition
and thinking mechanism of brain neural information transmission.
In 1982, Hindmarsh and Rose proposed the HR model. Because
it can describe all kinds of neural activities observed in the real
neuron system, the model has been widely used in the dynamic
analysis of neurons and the synchronization control of nonlinear
dynamical system. Therefore, the study of nonlinearly system is an
important bridge for the real application of complex networks.

On the other hand, in the evaluation index of the control system,
the convergence performance is a very key index. Thus, a striking
extension of finite-time control methods has appeared [17-19]. In
[17], a continuous finite time state feedback controller is proposed
for a kind of double integral system for the first time. Using finite
time control technology in [18], a continuous controller is devel-
oped to solve the synchronization problem of two chaotic systems.
A finite-time control method is proposed for both traditional and
overlapping cluster networks in [19]. Some more finite-time control
method can be seen in [20-21–23].

It should be noted that the settling time of finite-time control de-
pends heavily on the initial system values and controller parameters.
However, in some mechanical processes or industrial applications,
it is not easy to satisfy either of these conditions [24]. Therefore,
it is of great significance to design a finite time control strategy
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which can set the stability time in advance. Recently, some schol-
ars have proposed the prespecified-time control strategy [25-29].
By building a novel scaling function, [25] ensured the multi-agent
systems reach prescribed-time consensus under a spanning tree of
directed topology. Chen et al. [27] put forward prespecified-time
decentralized regulation protocols for strict feedback nonlinear
multi-agent systems. And [29] focused on the prescribed-time clus-
ter synchronization with average dwell-time constraint switched
signal complex networks.

Therefore, it is of great theoretical and practical significance to
design a control strategy for nonlinear dynamical system to achieve
stability in a prespecified time. Based on the above analysis, this
paper put forward a newly control strategy, which is applicable to
both undirected network and directed network, and does not need
to satisfy connectivity.

The highlights of this paper are as follows:
• We know that the settling time in finite-time control is re-
lated to initial values and the control parameters, while in
our proposed one, it can be user-specified through the time-
varying function ω(t).

• By regarding the desired orbit as a virtual system and con-
structing a newly graph, the original network does not need
to satisfies symmetry and connectivity. Thus the control
scheme we proposed can work in both undirected and di-
rected networks.

2 PRELIMINARIES
Let G = (ν ,E) be a directed/undirected graph. The adjacent matrix
A = (aadi j )m×m is defined as aadi j = 1for i , j, i, j ∈ ν = {1, 2, ·sN }if
there exists a path from node jto node i , otherwise aadi j = 0. And
D = diaд{d1,d2, ·sdM } is the degree matrix of the graph G with
di is the in-degree of vertex i . The Laplacian matrix is defined as
li j < 0if there is an edge from nodejto nodei, otherwiseli j = 0.

Besideslii = −
N∑

j=1, j,i
li j for alli . Denote by 1N a column vector

with all elements equal to 1.
Assumption 1: For all u, v ∈ Rm, there exist a positive constant

ρ such that

[u −v]T [f (u) − f (v)] ≤ ρ[u −v]T [u −v] (1)

Lemma 1[25]: If a graph G contains a directed spanning tree,
then the Laplacian matrix L is given by

L =

[
L1 L2

01×(N−1) 01×1

]
(2)

where L1 is a nonsingular M-matrix. Additionally, a positive
matrixK is given byK = diaд[k1,k2, ·skN−1], which satisfies

Q = L1K + KL1
T > 0 (3)

Definition 1[25]: The system is said to reach prespecified-time
synchronization if and only if there exists a presetting constant
Tpwhich holds ui (t) → us (t)ast → Tp ,ui (t) = us (t) as t≥Tp。

Definition 2[24]: Consider the time-varying function
ω(t),ω(t) =

Tp
Tp+tn−t whent ∈ [tn , tn+1),whereTp = tn+1 − tn is a

finite positive constant giving by users, n=0,1,2, . . . .

It can be seen that this function has different function expressions
at different time periods and equal spacing Tp.

3 MAIN RESULTS
The network of N nodes is considered as

Ûui (t) = f (ui (t)) + c
∑
j ∈ν

aadi j (uj (t) − ui (t)) + Φi (t) (4)

which holds for all i ∈ ν , whereui (t) is the state of node i, fis a
continuous function, c > 0 is the coupling strength, Φi (t) is the
control input and to be designed.
us (t)is the target trajectory which satisfies

Ûus (t) = f (us (t)) (5)

For all i ∈ ν , the controller is presented as

Φi (t) =
h
Tp ω(t)

∑
j ∈ν

aadi j (uj (t) − ui (t))

− (c + h
Tp ω(t))(ui (t) − us (t))

(6)

where h is a positive constant. Then we have

Ûui (t) = f (ui (t)) + c
∑
j ∈ν

aadi j (uj (t) − ui (t)) = f (ui (t)) − c
∑
j ∈ν

li juj (t)

+ h
Tp ω(t)

∑
j ∈ν

aadi j (uj (t) − ui (t)) −
h
Tp ω(t)

∑
j ∈ν

li juj (t)

− (c + h
Tp ω(t))(ui (t) − us (t)) − (c + h

Tp ω(t))(ui (t) − us (t))

(7)
Setting uN+1(t) = us (t), and we regard the desired target orbit

as a virtual system, further

Ûui (t) = f (ui (t)) − c
N+1∑
j=1

l̄i juj (t) −
h
Tp ω(t)

N+1∑
j=1

l̄i juj (t)

= f (ui (t)) − c
∑
j ∈ν

l̄i j (uj (t) − us (t))

− h
Tp ω(t)

∑
j ∈ν

l̄i j (uj (t) − us (t))

(8)

where L̄ is related to L.
L̄ = l̄i j = [

L + I I
0 0].And let L1=L+I.

Remark 1: It is precisely because we regard the desired target orbit
as a virtual system and construct a new connected graph that the
original network itself does not need to satisfy the connectivity.

Denote the error system as

εi = ui − us (9)

Then we have
Ûεi (t) = f (ui (t)) − f (us (t)) − c

∑
j ∈ν

l̄i jεj (t)

− h
Tp ω(t)

∑
j ∈ν

l̄i jεj (t)
(10)

which can be written as the following matrix form

ε = F (u) − F (s) − c(L1 ⊗ Im )ε

− h
Tp ω(t)(L1 ⊗ Im )ε

(11)

whereε= (ε1(t),ε2(t), · sεN (t)),F (u) = (f (u1(t), f (u2(t),
·s f (uN (t))), F (s) = (f (s(t), f (s(t), ·s f (s(t))).

Remark 2: It should be noted that the convergence time in finite-
time and fixed-time control can only be bounded in a finite time
period. Here, in our proposed prespecified-time control scheme, the
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convergence time can be preassign it arbitrarily as needed without
considering the system’s behaviors.

Theorem 1. Under Assumption 1, network (4) can reach global
prespecified-time synchronization by using the proposed controller
(6), provided that

λmin(Q)

λmax(K)
> 0 (12)

c
λmin(Q)

λmax(K)
− 2ρ > 0 (13)

Then the synchronization can be achieved in the finite pre-
setting time Tp and remain unchanged over [t1,∞)..

Proof: we select the Lyapunov function as

V = εT (K ⊗ Im )ε (14)

And take the derivative of V,
ÛV = 2εT (K ⊗ Im ) Ûε

= 2εT (K ⊗ Im )[F (u) − F (s)]

− 2cεT (KL1 ⊗ Im )ε

− 2 h
Tp ω(t)ε

T (KL1 ⊗ Im )ε

≤ 2ρεT (K ⊗ Im )ε

− cεT [(KL1 + L1TK) ⊗ Im ]ε

− h
Tp ω(t)ε

T [(KL1 + L1TK) ⊗ Im ]ε

(15)

According to Lemma 1, there exists a positive matrix Kand satis-
fies

Q = KL1 + L1
TK > 0 (16)

where K = diaд[k1,k2, ·skM ]. Then we have

ÛV (t) ≤ 2ρεT (K ⊗ Im )ε − c
λmin(Q )

λmax(K )
εT (K ⊗ Im )ε

− h
Tp ω(t)

λmin(Q )

λmax(K )
εT (K ⊗ Im )ε

(17)

Let ξ = c λmin(Q )

λmax(K )
− 2ρ > 0,δ = λmin(Q )

λmax(K )
> 0.

Further
ÛV (t) ≤ −ξV (t) − δ

h

Tp
ω(t)V (t) (18)

Denoteψ (t) = ωm (t),then we have Ûψ (t) =mωm−1(t) Ûω(t),
Thus

Ûψ (t)

ψ (t)
=
m Ûω(t)

ω(t)
=
mω(t)

Tp
.

and multiply both sides of inequality (18) byψ δ (t)

ψ δ (t) ÛV (t) ≤ −ξψ δ (t)V (t) − δ
h

Tp
ω(t)ψ δ (t)V (t) (19)

Case 1: t ∈ [t0, t1). From (19) ones have

(ψ δ (t)V (t))′ ≤ −ξψ δ (t)V (t)

ψ δ (t)V (t) ≤ e−ξ (t−t0)ψ δ (t)V (t0)
V (t) ≤ e−ξ (t−t0)ω−mδ (t)ωmδ (t0)V (t0)

(20)

From the definition of ω(t), we have

lim
t→t+0

ω−mδ (t) = 1, lim
t→t−1

ω−mδ (t) = 0. (21)

Further we have

V (t) ≤ e−ξ (t−t0)ω−mδ (t)V (t0) (22)

Notice thatω−mδ (t) → 0, ast → t−1 .And then

lim
t→t1−

∥ ε(t) ∥→ 0 (23)

Case 2: The system is maintained stable over [t1,∞).
Since V(t) is differentiable, then it is continuous, which further

yields V (t1) = lim
t→t−1

V (t) = 0.From inequality (18) we have V(t) is

monotonically decreasing. Besides,

0 ≤ V (t) ≤ V (t1) = 0, [t1, t2). (24)

That is, V (t) ≡ 0, ε(t) ≡ 0on[t1, t2). And by induction, ε(t) ≡

0on[tn , tn+1). Then we have ε(t) ≡ 0on[t1,∞). It can be seen that
through prespecified-time control, the system can achieve synchro-
nization within a finite time Tp.

Remark 3: In somemechanical processes or industrial applications,
the settling time must be chosen to drive the system state to a given
precision. Therefore, the control strategy that can obtain the stability
time in advance is of great significance.

4 NUMERICAL SIMULATIONS
In this part, two numerical examples are provided to demonstrate
the feasibility of the proposed scheme. Holden et al. proposed the
HR model in 1992, which can describe the numerical calculation of
the firing behavior of neurons. Since then, many researchers have
used the HR neuron system model to carry out a lot of experiments
on the nonlinear dynamics of the nervous system. Now, HR systems
are widely used to simulate the behavior of real biological neurons
[25]. Here we use single HR neuron system as node dynamics,
which is described by:


Ûx = αx2 − x3 − y − z
Ûy = (α + d)x2 − y
Ûz = r (βx + b − z)

(25)

whereα = 2.8,d = 1.6, r = 0.001, β = 9,b = 5.The fast membrane
voltage is expressed by x , the recovery variable was expressed by
y, and the slow adaptation current was expressed by z.

By setting the appropriate parameters, the HR neuron system
shows periodic discharge changes, as shown in Figure 1

4.1 The Network with Undirected Topology
First we examine the undirected graph, whose Laplacian matrix is
as follows

Lu =

©­­­­­­­«

2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 −1 0 −1 3 0
0 0 0 −1 0 1

ª®®®®®®®¬
Then we choose the coupling strength c=0.8, the control param-

eter h=1 and let the convergence time Tp=4s. The initial values
of each state are set randomly among [0,1]. And the evolutions of
control input for each dimension is shown in Figure 2

The results shown in Figure 3 illustrate that the nonlinear dy-
namical HR neuron system achieve synchronization within a pre-
specified finite time Tp=4s.
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Figure 1: Evolution of the Fast (A) and Slow (B) Variables in
the Hr Neuron System.

Figure 2: Evolution of Control Inputs of Undirected Graph.

4.2 The Network with Directed Topology
Then we examine the directed graph, whose Laplacian matrix and
topology are as follows.

Ld =

©­­­­­«
4 −1 −1 −1 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ª®®®®®¬

Figure 3: Evolution of Total Errors of Undirected Graph.

Figure 4: The Topology of Directed Graph.

Figure 5: Evolution of Control Inputs of Directed Graph.

From Figure 4 we see that the directed graph is unconnected.
Here, we choose c = 1, h = 1 and T (p) = 1.5s The evolution of
errors is shown in Figure 5, which depicts that our control method
is suitable for disconnected topology. From Figure 2 and Figure 6
we can see that the control input is zero after the prespecified-time
Tp and is not be too large.
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Figure 6: Evolution of Total Errors of Directed Graph.

5 CONCLUSION
In this paper, we investigate the prescribed-time control of complex
networks coupled with nonlinear dynamical system. The conver-
gence time can be preassigned arbitrarily which is different from
finite-time control. And the control scheme we proposed is also
works in disconnected graph. Our future research direction is to
consider time delays and data dropout during information trans-
mission.
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